#### MTE 202, 1<sup>st</sup> Semester 2018-2019 Digital Circuits

#### **Chapter 1: Introduction**

- Teaching Assistants:
  - Eng.: Mohamed Aziz
- Grading :

| Midterm + Quiz | 40  |
|----------------|-----|
| Attendance     | 10  |
| Circuits       | 10  |
| Final Exam     | 40  |
| Total          | 100 |

• Just follow the course notes

http://bu.edu.eg/staff/motazali3-courses/14758

- Textbook:
  - Digital Fundamentals, Thomas Floyd, 11<sup>th</sup> Edition,
    Prentice Hall, 2014.
- Lectures (Video playlist)

https://www.youtube.com/watch?v=CvpTpVHEpeY&list=PLJcb

pTTZo96tpTEcwrUojt51wQPhHh8IX

# **Course Contents**

- Introduction (Revision).
  - Logic Gates
  - Boolean Algebra
- Combinational Logic Circuits.
- Flip Flops and related devices.
- Counters and Registers.
- Sequential Circuits.

# **Logic Gates**

# **Binary Logic and Gates**

- Binary variables take on one of two values.
- <u>Logical operators</u> operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- Logic gates implement logic functions.
- <u>Boolean Algebra</u>: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

### **Binary Variables**

- Recall that the two binary values have different names:
  - True/False
  - On/Off
  - Yes/No
  - 1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
  - $-A, B, y, z, or X_1$  for now
  - RESET, START\_IT, or ADD1 later

# **Logical Operations**

- The three basic logical operations are:
  - AND
  - OR
  - NOT
- AND is denoted by a dot (·).
- OR is denoted by a plus (+).
- NOT is denoted by an over bar ( ).

#### **Truth Tables**



#### **Logic Gate Behavior**

• A waveform in time domain can be applied to logic gate



# **NAND & NOR Logic Gates**

- Both NAND and NOR are composite functions, but we discuss them here, since they are commercially available.
- The NAND function is inverted AND; NOR is inverted OR.
- Mathematically, we use a horizontal bar to indicate the inversion.

i.e.: a NAND b is written as a.b, and a NOR b is written as a+b

• As NAND is the reverse of AND, the NAND output is 1 unless all inputs are 1. Likewise, NOR outputs 0 unless all inputs are 0.

#### **NAND & NOR Logic Gates**



# **Exclusive-OR (XOR)**

• Exclusive-OR (XOR) produces a HIGH output whenever the two inputs are at opposite levels.





# **Exclusive-NOR (XNOR)**

• Exclusive-NOR (XNOR) produces a HIGH output whenever the two inputs are at the same level.



### **Boolean Algebra**

- Invented by George Boole in 1854.
- An algebraic structure defined by a set B = {0, 1}, together with two binary operators (+ and ·) and a unary operator (<sup>-</sup>).
- Set of axioms and theorems to simplify Boolean equations.
- Like regular algebra, but in some cases simpler because variables can have only two values (1 or 0).
- Axioms and theorems obey the principles of duality:
  - ANDs and ORs interchanged, 0's and 1's interchanged

#### **Boolean Axioms**

|    | Axiom                           |     | Dual                  | Name         |
|----|---------------------------------|-----|-----------------------|--------------|
| A1 | $B = 0$ if $B \neq 1$           | A1′ | $B = 1$ if $B \neq 0$ | Binary field |
| A2 | $\overline{0} = 1$              | A2′ | $\overline{1} = 0$    | NOT          |
| A3 | $0 \bullet 0 = 0$               | A3′ | 1 + 1 = 1             | AND/OR       |
| A4 | 1 • 1 = 1                       | A4′ | 0 + 0 = 0             | AND/OR       |
| A5 | $0 \bullet 1 = 1 \bullet 0 = 0$ | A5′ | 1 + 0 = 0 + 1 = 1     | AND/OR       |

|    | Theorem                      |                               | Dual                   | Name         |
|----|------------------------------|-------------------------------|------------------------|--------------|
| T1 | $B \bullet 1 = B$            | T1′                           | B + 0 = B              | Identity     |
| T2 | $B \bullet 0 = 0$            | T2′                           | B + 1 = 1              | Null Element |
| Т3 | $B \bullet B = B$            | T3′                           | B + B = B              | Idempotency  |
| T4 |                              | $\overline{\overline{B}} = B$ |                        | Involution   |
| Т5 | $B \bullet \overline{B} = 0$ | T5'                           | $B + \overline{B} = 1$ | Complements  |

### **T1: Identity Theorem**

- B 1 = B
- B + 0 = B



### **T2: Null Element Theorem**

- B 0 = 0
- B + 1 = 1





### **T3: Idempotency Theorem**

- B B = B
- B + B = B



### **T4: Involution Theorem**

•  $\overline{\overline{B}} = B$ 



### **T5: Complement Theorem**

- $B \cdot \overline{B} = 0$
- B + B = 1



#### **Review of Boolean Algebra & Functions**



# **Boolean Theorems: Summary**

|    | Theorem                      |                               | Dual                   | Name         |
|----|------------------------------|-------------------------------|------------------------|--------------|
| T1 | $B \bullet 1 = B$            | T1′                           | B + 0 = B              | Identity     |
| T2 | $B \bullet 0 = 0$            | T2′                           | B + 1 = 1              | Null Element |
| Т3 | $B \bullet B = B$            | T3′                           | B + B = B              | Idempotency  |
| T4 |                              | $\overline{\overline{B}} = B$ |                        | Involution   |
| Т5 | $B \bullet \overline{B} = 0$ | T5'                           | $B + \overline{B} = 1$ | Complements  |

# **Useful Theorems**

- Minimization  $X Y + \overline{X} Y = Y$
- Absorption
  X + X Y = X
- Simplification
  X + X Y = X + Y
- DeMorgan's  $\overline{X + Y} = \overline{X} \cdot \overline{Y}$

- •Minimization (dual)  $(X+Y)(\overline{X}+Y) = Y$
- •Absorption (dual)  $X \cdot (X + Y) = X$
- Simplification (dual)  $X \cdot (\overline{X} + Y) = X \cdot Y$

•DeMorgan's (dual)  $\overline{X \cdot Y} = \overline{X} + \overline{Y}$ 

# **A Simplification Example:**

- Writing the minterm expression:
  F = A B C + A B C + A B C + ABC + ABC
- Simplifying:  $F = \overline{A} \overline{B} C + A (\overline{B} \overline{C} + \overline{B} C + B \overline{C} + B C)$   $F = \overline{A} \overline{B} C + A (\overline{B} (\overline{C} + C) + B (\overline{C} + C))$   $F = \overline{A} \overline{B} C + A (\overline{B} + B)$   $F = \overline{A} \overline{B} C + A$   $F = \overline{B} C + A$
- Simplified F contains 3 literals compared to 15

# **AND/OR Two-Level Implementation**

• The two implementations for F are shown below





It is quite apparent which is simpler!

- Karnaugh maps provide an alternative way of simplifying logic circuits.
- Instead of using Boolean algebra simplification techniques, you can transfer logic values from a Boolean statement or a truth table into a Karnaugh map.
- The arrangement of 0's and 1's within the map helps you to visualise the logic relationships between the variables and leads directly to a simplified Boolean statement.

- Each **minterm** in a truth table corresponds to a cell in the K-Map.
- K-Map cells are labeled such that both horizontal and vertical movement differ only by one variable.
- Since the adjacent cells differ by only one variable, they can be grouped to create simpler terms in the sum-of-products expression.
- The **sum-of-products** expression for the logic function can be obtained by OR-ing together the cells or group of cells that contain 1s.

• Karnaugh maps, or K-maps, are often used to simplify logic problems with 2, 3 or 4 variables.



• 3 variables (ABC) Karnaugh map



• 4 variables (ABCD) Karnaugh map



# **K-maps Simplification**

- Construct a label for the K-Map. Place 1s in cells corresponding to the 1s in the truth table. Place 0s in the other cells.
- 2. Identify and group all <u>isolated 1's</u>. Isolated 1's are ones that cannot be grouped with any other one, or can only be grouped with one other adjacent one.
- 3. Group any hex.
- 4. Group any octet, even if it contains <u>some</u> 1s already grouped but not enclosed in a hex.
- 5. Group any quad, even if it contains <u>some</u> 1s already grouped but not enclosed in a hex or octet.
- 6. Group any pair, even if it contains <u>some</u> 1s already grouped but not enclosed in a hex, octet, or quad.
- 7. **OR together** all terms to generate the SOP equation.



Example 1:



| А | В | Y |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |





#### **K-maps**

#### Example 2:

#### $Y = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C}$

